3.126 \(\int f^{a+b x+c x^2} \cos ^2(d+e x) \, dx\)

Optimal. Leaf size=231 \[ \frac {\sqrt {\pi } f^{a-\frac {b^2}{4 c}} \text {erfi}\left (\frac {\sqrt {\log (f)} (b+2 c x)}{2 \sqrt {c}}\right )}{4 \sqrt {c} \sqrt {\log (f)}}-\frac {\sqrt {\pi } f^a e^{\frac {(2 e+i b \log (f))^2}{4 c \log (f)}-2 i d} \text {erfi}\left (\frac {-b \log (f)-2 c x \log (f)+2 i e}{2 \sqrt {c} \sqrt {\log (f)}}\right )}{8 \sqrt {c} \sqrt {\log (f)}}+\frac {\sqrt {\pi } f^a e^{2 i d-\frac {(b \log (f)+2 i e)^2}{4 c \log (f)}} \text {erfi}\left (\frac {b \log (f)+2 c x \log (f)+2 i e}{2 \sqrt {c} \sqrt {\log (f)}}\right )}{8 \sqrt {c} \sqrt {\log (f)}} \]

[Out]

1/8*exp(-2*I*d+1/4*(2*e+I*b*ln(f))^2/c/ln(f))*f^a*erfi(1/2*(-2*I*e+b*ln(f)+2*c*x*ln(f))/c^(1/2)/ln(f)^(1/2))*P
i^(1/2)/c^(1/2)/ln(f)^(1/2)+1/8*exp(2*I*d-1/4*(2*I*e+b*ln(f))^2/c/ln(f))*f^a*erfi(1/2*(2*I*e+b*ln(f)+2*c*x*ln(
f))/c^(1/2)/ln(f)^(1/2))*Pi^(1/2)/c^(1/2)/ln(f)^(1/2)+1/4*f^(a-1/4*b^2/c)*erfi(1/2*(2*c*x+b)*ln(f)^(1/2)/c^(1/
2))*Pi^(1/2)/c^(1/2)/ln(f)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 231, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {4473, 2234, 2204, 2287} \[ \frac {\sqrt {\pi } f^{a-\frac {b^2}{4 c}} \text {Erfi}\left (\frac {\sqrt {\log (f)} (b+2 c x)}{2 \sqrt {c}}\right )}{4 \sqrt {c} \sqrt {\log (f)}}-\frac {\sqrt {\pi } f^a e^{\frac {(2 e+i b \log (f))^2}{4 c \log (f)}-2 i d} \text {Erfi}\left (\frac {-b \log (f)-2 c x \log (f)+2 i e}{2 \sqrt {c} \sqrt {\log (f)}}\right )}{8 \sqrt {c} \sqrt {\log (f)}}+\frac {\sqrt {\pi } f^a e^{2 i d-\frac {(b \log (f)+2 i e)^2}{4 c \log (f)}} \text {Erfi}\left (\frac {b \log (f)+2 c x \log (f)+2 i e}{2 \sqrt {c} \sqrt {\log (f)}}\right )}{8 \sqrt {c} \sqrt {\log (f)}} \]

Antiderivative was successfully verified.

[In]

Int[f^(a + b*x + c*x^2)*Cos[d + e*x]^2,x]

[Out]

(f^(a - b^2/(4*c))*Sqrt[Pi]*Erfi[((b + 2*c*x)*Sqrt[Log[f]])/(2*Sqrt[c])])/(4*Sqrt[c]*Sqrt[Log[f]]) - (E^((-2*I
)*d + (2*e + I*b*Log[f])^2/(4*c*Log[f]))*f^a*Sqrt[Pi]*Erfi[((2*I)*e - b*Log[f] - 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt
[Log[f]])])/(8*Sqrt[c]*Sqrt[Log[f]]) + (E^((2*I)*d - ((2*I)*e + b*Log[f])^2/(4*c*Log[f]))*f^a*Sqrt[Pi]*Erfi[((
2*I)*e + b*Log[f] + 2*c*x*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])])/(8*Sqrt[c]*Sqrt[Log[f]])

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2234

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2287

Int[(u_.)*(F_)^(v_)*(G_)^(w_), x_Symbol] :> With[{z = v*Log[F] + w*Log[G]}, Int[u*NormalizeIntegrand[E^z, x],
x] /; BinomialQ[z, x] || (PolynomialQ[z, x] && LeQ[Exponent[z, x], 2])] /; FreeQ[{F, G}, x]

Rule 4473

Int[Cos[v_]^(n_.)*(F_)^(u_), x_Symbol] :> Int[ExpandTrigToExp[F^u, Cos[v]^n, x], x] /; FreeQ[F, x] && (LinearQ
[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0]

Rubi steps

\begin {align*} \int f^{a+b x+c x^2} \cos ^2(d+e x) \, dx &=\int \left (\frac {1}{2} f^{a+b x+c x^2}+\frac {1}{4} e^{-2 i d-2 i e x} f^{a+b x+c x^2}+\frac {1}{4} e^{2 i d+2 i e x} f^{a+b x+c x^2}\right ) \, dx\\ &=\frac {1}{4} \int e^{-2 i d-2 i e x} f^{a+b x+c x^2} \, dx+\frac {1}{4} \int e^{2 i d+2 i e x} f^{a+b x+c x^2} \, dx+\frac {1}{2} \int f^{a+b x+c x^2} \, dx\\ &=\frac {1}{4} \int \exp \left (-2 i d+a \log (f)+c x^2 \log (f)-x (2 i e-b \log (f))\right ) \, dx+\frac {1}{4} \int \exp \left (2 i d+a \log (f)+c x^2 \log (f)+x (2 i e+b \log (f))\right ) \, dx+\frac {1}{2} f^{a-\frac {b^2}{4 c}} \int f^{\frac {(b+2 c x)^2}{4 c}} \, dx\\ &=\frac {f^{a-\frac {b^2}{4 c}} \sqrt {\pi } \text {erfi}\left (\frac {(b+2 c x) \sqrt {\log (f)}}{2 \sqrt {c}}\right )}{4 \sqrt {c} \sqrt {\log (f)}}+\frac {1}{4} \left (\exp \left (-2 i d+\frac {(2 e+i b \log (f))^2}{4 c \log (f)}\right ) f^a\right ) \int \exp \left (\frac {(-2 i e+b \log (f)+2 c x \log (f))^2}{4 c \log (f)}\right ) \, dx+\frac {1}{4} \left (e^{2 i d-\frac {(2 i e+b \log (f))^2}{4 c \log (f)}} f^a\right ) \int \exp \left (\frac {(2 i e+b \log (f)+2 c x \log (f))^2}{4 c \log (f)}\right ) \, dx\\ &=\frac {f^{a-\frac {b^2}{4 c}} \sqrt {\pi } \text {erfi}\left (\frac {(b+2 c x) \sqrt {\log (f)}}{2 \sqrt {c}}\right )}{4 \sqrt {c} \sqrt {\log (f)}}-\frac {\exp \left (-2 i d+\frac {(2 e+i b \log (f))^2}{4 c \log (f)}\right ) f^a \sqrt {\pi } \text {erfi}\left (\frac {2 i e-b \log (f)-2 c x \log (f)}{2 \sqrt {c} \sqrt {\log (f)}}\right )}{8 \sqrt {c} \sqrt {\log (f)}}+\frac {e^{2 i d-\frac {(2 i e+b \log (f))^2}{4 c \log (f)}} f^a \sqrt {\pi } \text {erfi}\left (\frac {2 i e+b \log (f)+2 c x \log (f)}{2 \sqrt {c} \sqrt {\log (f)}}\right )}{8 \sqrt {c} \sqrt {\log (f)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.61, size = 204, normalized size = 0.88 \[ \frac {\sqrt {\pi } e^{-\frac {i b e}{c}} f^{a-\frac {b^2}{4 c}} \left ((\cos (2 d)+i \sin (2 d)) e^{\frac {e^2}{c \log (f)}} \text {erfi}\left (\frac {\log (f) (b+2 c x)+2 i e}{2 \sqrt {c} \sqrt {\log (f)}}\right )+(\cos (2 d)-i \sin (2 d)) e^{\frac {e (e+2 i b \log (f))}{c \log (f)}} \text {erfi}\left (\frac {\log (f) (b+2 c x)-2 i e}{2 \sqrt {c} \sqrt {\log (f)}}\right )+2 e^{\frac {i b e}{c}} \text {erfi}\left (\frac {\sqrt {\log (f)} (b+2 c x)}{2 \sqrt {c}}\right )\right )}{8 \sqrt {c} \sqrt {\log (f)}} \]

Antiderivative was successfully verified.

[In]

Integrate[f^(a + b*x + c*x^2)*Cos[d + e*x]^2,x]

[Out]

(f^(a - b^2/(4*c))*Sqrt[Pi]*(2*E^((I*b*e)/c)*Erfi[((b + 2*c*x)*Sqrt[Log[f]])/(2*Sqrt[c])] + E^((e*(e + (2*I)*b
*Log[f]))/(c*Log[f]))*Erfi[((-2*I)*e + (b + 2*c*x)*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])]*(Cos[2*d] - I*Sin[2*d]) +
 E^(e^2/(c*Log[f]))*Erfi[((2*I)*e + (b + 2*c*x)*Log[f])/(2*Sqrt[c]*Sqrt[Log[f]])]*(Cos[2*d] + I*Sin[2*d])))/(8
*Sqrt[c]*E^((I*b*e)/c)*Sqrt[Log[f]])

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 224, normalized size = 0.97 \[ -\frac {\sqrt {\pi } \sqrt {-c \log \relax (f)} \operatorname {erf}\left (\frac {{\left ({\left (2 \, c x + b\right )} \log \relax (f) + 2 i \, e\right )} \sqrt {-c \log \relax (f)}}{2 \, c \log \relax (f)}\right ) e^{\left (-\frac {{\left (b^{2} - 4 \, a c\right )} \log \relax (f)^{2} - 4 \, e^{2} - {\left (8 i \, c d - 4 i \, b e\right )} \log \relax (f)}{4 \, c \log \relax (f)}\right )} + \sqrt {\pi } \sqrt {-c \log \relax (f)} \operatorname {erf}\left (\frac {{\left ({\left (2 \, c x + b\right )} \log \relax (f) - 2 i \, e\right )} \sqrt {-c \log \relax (f)}}{2 \, c \log \relax (f)}\right ) e^{\left (-\frac {{\left (b^{2} - 4 \, a c\right )} \log \relax (f)^{2} - 4 \, e^{2} - {\left (-8 i \, c d + 4 i \, b e\right )} \log \relax (f)}{4 \, c \log \relax (f)}\right )} + \frac {2 \, \sqrt {\pi } \sqrt {-c \log \relax (f)} \operatorname {erf}\left (\frac {{\left (2 \, c x + b\right )} \sqrt {-c \log \relax (f)}}{2 \, c}\right )}{f^{\frac {b^{2} - 4 \, a c}{4 \, c}}}}{8 \, c \log \relax (f)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+b*x+a)*cos(e*x+d)^2,x, algorithm="fricas")

[Out]

-1/8*(sqrt(pi)*sqrt(-c*log(f))*erf(1/2*((2*c*x + b)*log(f) + 2*I*e)*sqrt(-c*log(f))/(c*log(f)))*e^(-1/4*((b^2
- 4*a*c)*log(f)^2 - 4*e^2 - (8*I*c*d - 4*I*b*e)*log(f))/(c*log(f))) + sqrt(pi)*sqrt(-c*log(f))*erf(1/2*((2*c*x
 + b)*log(f) - 2*I*e)*sqrt(-c*log(f))/(c*log(f)))*e^(-1/4*((b^2 - 4*a*c)*log(f)^2 - 4*e^2 - (-8*I*c*d + 4*I*b*
e)*log(f))/(c*log(f))) + 2*sqrt(pi)*sqrt(-c*log(f))*erf(1/2*(2*c*x + b)*sqrt(-c*log(f))/c)/f^(1/4*(b^2 - 4*a*c
)/c))/(c*log(f))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int f^{c x^{2} + b x + a} \cos \left (e x + d\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+b*x+a)*cos(e*x+d)^2,x, algorithm="giac")

[Out]

integrate(f^(c*x^2 + b*x + a)*cos(e*x + d)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.26, size = 217, normalized size = 0.94 \[ -\frac {\sqrt {\pi }\, f^{a} {\mathrm e}^{-\frac {\ln \relax (f )^{2} b^{2}-4 i \ln \relax (f ) b e +8 i d \ln \relax (f ) c -4 e^{2}}{4 \ln \relax (f ) c}} \erf \left (-\sqrt {-c \ln \relax (f )}\, x +\frac {b \ln \relax (f )-2 i e}{2 \sqrt {-c \ln \relax (f )}}\right )}{8 \sqrt {-c \ln \relax (f )}}-\frac {\sqrt {\pi }\, f^{a} {\mathrm e}^{-\frac {\ln \relax (f )^{2} b^{2}+4 i \ln \relax (f ) b e -8 i d \ln \relax (f ) c -4 e^{2}}{4 \ln \relax (f ) c}} \erf \left (-\sqrt {-c \ln \relax (f )}\, x +\frac {2 i e +b \ln \relax (f )}{2 \sqrt {-c \ln \relax (f )}}\right )}{8 \sqrt {-c \ln \relax (f )}}-\frac {\sqrt {\pi }\, f^{a} f^{-\frac {b^{2}}{4 c}} \erf \left (-\sqrt {-c \ln \relax (f )}\, x +\frac {b \ln \relax (f )}{2 \sqrt {-c \ln \relax (f )}}\right )}{4 \sqrt {-c \ln \relax (f )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(f^(c*x^2+b*x+a)*cos(e*x+d)^2,x)

[Out]

-1/8*Pi^(1/2)*f^a*exp(-1/4*(ln(f)^2*b^2-4*I*ln(f)*b*e+8*I*d*ln(f)*c-4*e^2)/ln(f)/c)/(-c*ln(f))^(1/2)*erf(-(-c*
ln(f))^(1/2)*x+1/2*(b*ln(f)-2*I*e)/(-c*ln(f))^(1/2))-1/8*Pi^(1/2)*f^a*exp(-1/4*(ln(f)^2*b^2+4*I*ln(f)*b*e-8*I*
d*ln(f)*c-4*e^2)/ln(f)/c)/(-c*ln(f))^(1/2)*erf(-(-c*ln(f))^(1/2)*x+1/2*(2*I*e+b*ln(f))/(-c*ln(f))^(1/2))-1/4*P
i^(1/2)*f^a*f^(-1/4*b^2/c)/(-c*ln(f))^(1/2)*erf(-(-c*ln(f))^(1/2)*x+1/2/(-c*ln(f))^(1/2)*b*ln(f))

________________________________________________________________________________________

maxima [C]  time = 0.38, size = 399, normalized size = 1.73 \[ \frac {\sqrt {\pi } {\left (f^{a} {\left (\cos \left (-\frac {2 \, c d - b e}{c}\right ) - i \, \sin \left (-\frac {2 \, c d - b e}{c}\right )\right )} \operatorname {erf}\left (x \overline {\sqrt {-c \log \relax (f)}} - \frac {1}{2} \, {\left (b \log \relax (f) + 2 i \, e\right )} \overline {\frac {1}{\sqrt {-c \log \relax (f)}}}\right ) e^{\left (\frac {e^{2}}{c \log \relax (f)}\right )} + f^{a} {\left (\cos \left (-\frac {2 \, c d - b e}{c}\right ) + i \, \sin \left (-\frac {2 \, c d - b e}{c}\right )\right )} \operatorname {erf}\left (x \overline {\sqrt {-c \log \relax (f)}} - \frac {1}{2} \, {\left (b \log \relax (f) - 2 i \, e\right )} \overline {\frac {1}{\sqrt {-c \log \relax (f)}}}\right ) e^{\left (\frac {e^{2}}{c \log \relax (f)}\right )} + f^{a} {\left (\cos \left (-\frac {2 \, c d - b e}{c}\right ) - i \, \sin \left (-\frac {2 \, c d - b e}{c}\right )\right )} \operatorname {erf}\left (\frac {{\left (2 \, c x \log \relax (f) + b \log \relax (f) + 2 i \, e\right )} \sqrt {-c \log \relax (f)}}{2 \, c \log \relax (f)}\right ) e^{\left (\frac {e^{2}}{c \log \relax (f)}\right )} + f^{a} {\left (\cos \left (-\frac {2 \, c d - b e}{c}\right ) + i \, \sin \left (-\frac {2 \, c d - b e}{c}\right )\right )} \operatorname {erf}\left (\frac {{\left (2 \, c x \log \relax (f) + b \log \relax (f) - 2 i \, e\right )} \sqrt {-c \log \relax (f)}}{2 \, c \log \relax (f)}\right ) e^{\left (\frac {e^{2}}{c \log \relax (f)}\right )} + 2 \, f^{a} \operatorname {erf}\left (-\frac {1}{2} \, b \overline {\frac {1}{\sqrt {-c \log \relax (f)}}} \log \relax (f) + x \overline {\sqrt {-c \log \relax (f)}}\right ) - 2 \, f^{a} \operatorname {erf}\left (\frac {2 \, c x \log \relax (f) + b \log \relax (f)}{2 \, \sqrt {-c \log \relax (f)}}\right )\right )}}{16 \, \sqrt {-c \log \relax (f)} f^{\frac {b^{2}}{4 \, c}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f^(c*x^2+b*x+a)*cos(e*x+d)^2,x, algorithm="maxima")

[Out]

1/16*sqrt(pi)*(f^a*(cos(-(2*c*d - b*e)/c) - I*sin(-(2*c*d - b*e)/c))*erf(x*conjugate(sqrt(-c*log(f))) - 1/2*(b
*log(f) + 2*I*e)*conjugate(1/sqrt(-c*log(f))))*e^(e^2/(c*log(f))) + f^a*(cos(-(2*c*d - b*e)/c) + I*sin(-(2*c*d
 - b*e)/c))*erf(x*conjugate(sqrt(-c*log(f))) - 1/2*(b*log(f) - 2*I*e)*conjugate(1/sqrt(-c*log(f))))*e^(e^2/(c*
log(f))) + f^a*(cos(-(2*c*d - b*e)/c) - I*sin(-(2*c*d - b*e)/c))*erf(1/2*(2*c*x*log(f) + b*log(f) + 2*I*e)*sqr
t(-c*log(f))/(c*log(f)))*e^(e^2/(c*log(f))) + f^a*(cos(-(2*c*d - b*e)/c) + I*sin(-(2*c*d - b*e)/c))*erf(1/2*(2
*c*x*log(f) + b*log(f) - 2*I*e)*sqrt(-c*log(f))/(c*log(f)))*e^(e^2/(c*log(f))) + 2*f^a*erf(-1/2*b*conjugate(1/
sqrt(-c*log(f)))*log(f) + x*conjugate(sqrt(-c*log(f)))) - 2*f^a*erf(1/2*(2*c*x*log(f) + b*log(f))/sqrt(-c*log(
f))))/(sqrt(-c*log(f))*f^(1/4*b^2/c))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int f^{c\,x^2+b\,x+a}\,{\cos \left (d+e\,x\right )}^2 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(f^(a + b*x + c*x^2)*cos(d + e*x)^2,x)

[Out]

int(f^(a + b*x + c*x^2)*cos(d + e*x)^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int f^{a + b x + c x^{2}} \cos ^{2}{\left (d + e x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(f**(c*x**2+b*x+a)*cos(e*x+d)**2,x)

[Out]

Integral(f**(a + b*x + c*x**2)*cos(d + e*x)**2, x)

________________________________________________________________________________________